Internet of Things and Synergic Deep Learning Based Biomedical Tongue Color Image Analysis for Disease Diagnosis and Classification
نویسندگان
چکیده
In recent times, internet of things (IoT) and wireless communication techniques become widely used in healthcare sector. Biomedical image processing is commonly employed to detect the existence diseases using biomedical images. Tongue diagnosis an efficient, non-invasive model perform auxiliary any time anywhere that support global necessity primary system. Conventionally, medical practitioners investigate tongue features based on their expert's knowledge comes from experience. order eradicate qualitative aspects, images can be quantitatively examined, offering effective disease diagnostic process such a way physical harm patients minimized. Numerous analysis approaches exist literature, it required develop automated deep learning (DL) models diagnose analysis. this view, paper designs IoT synergic color (ASDL-TCI) for classification. The proposed ASDL-TCI operates major stages namely data acquisition, pre-processing, feature extraction, classification, parameter optimization. Primarily, devices are capture human transmitted cloud further addition, median filtering pre-processing SDL extraction employed. Moreover, neural network (DNN) classifier applied determine diseases. Lastly, enhanced black widow optimization (EBWO) tuning takes place enhance performance. For assessing effectual performance model, set simulations take benchmark examined results under distinct dimensions. simulation outcome verified over compared methods with maximum precision, recall, accuracy 0.984, 0.973, 0.983.
منابع مشابه
Deep Learning for Biomedical Texture Image Analysis
This paper shows promising results in the application of Convolutional Neural Networks (CNN) to biomedical imaging. Texture is often dominant in biomedical imaging and its analysis is essential to automatically obtain meaningful information. Therefore, we introduce a method using a Texture CNN for the classification of biomedical images. We test our approach on three datasets of liver tissues i...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولDisease Diagnosis for Various Signs using Tongue Color Image Segmentation
Article history: Received 28 January 2015 Accepted 25 February 2015 Available online 6 March 2015
متن کاملClassification of Medical Images and Illustrations in the Biomedical Literature Using Synergic Deep Learning
The Classification of medical images and illustrations in the literature aims to label a medical image according to the modality it was produced or label an illustration according to its production attributes. It is an essential and challenging research hotspot in the area of automated literature review, retrieval and mining. The significant intra-class variation and inter-class similarity caus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3094226